Voronoi Games

Frederik Brasz '09

FrankFest February 6, 2016

Outline

- Introduction to Voronoi diagrams
 - Applications
- The Voronoi game
 - Demo
 - Optimal strategy in 1D
 - Simulated results in 2D
- Extension: weighted Voronoi game

- · · ·
 - •
 - •
- •
- - •

- · · · ·
- - igodot
- •
- - - •

Fortune's sweep line algorithm

Source: https://en.wikipedia.org/wiki/Fortune%27s_algorithm

Computational complexity (steps required):

 $O(n\log n)$

Steps for half-plane construction:

 $O(n^2)$

Applications of Voronoi diagrams

Robotics – route planning

Source: http://www.cise.ufl.edu/~sitharam/COURSES/CG/kreveldmorevoronoi.pdf

Avoid obstacles by traversing edges of diagram

Applications of Voronoi diagrams

- Facility location
 - Place furthest from existing facilities
 - Find largest empty circle (vertex of diagram)

- Existing facilities
- Optimal location for new facility

Model for competitive facility location

- Take turns placing sites
- Capture more area than opponent after *n* turns

Play it at http://cfbrasz.github.io

- Optimal strategies?
- Greedy algorithms or balanced cells?

Player 2 (blue) has winning strategy in 1D game

- Define *n* keypoints, given *n* turns per player: $u_i = (1 + 2i)/n$
- Place sites on keypoints when available

Player 2 (blue) has winning strategy in 1D game

• Define *n* keypoints, given *n* turns per player:

$$u_i = (1+2i)/n$$

• Place sites on keypoints when available

Player 2 (blue) has winning strategy in 1D game

 Advantage of going last – can place always place closer to opponent's sites

Player 2 (blue) has winning strategy in 1D game

 Advantage of going last – can place always place closer to opponent's sites

Note: red can make blue only win by ε by placing within $\varepsilon/2n$ of the keypoints

- Optimal strategies? Can player 2 always win?
- Greedy algorithms or balanced cells?

No winning strategy known

- No winning strategy known
- Simulated games found 2nd player winning 85% of the time (with n=5 turns each)

Source: B. Bouzy et al., MCTS Experiments on the Voronoi Game, Advances in Computer Games, 7168 (2011)

 Handicap around +5% (of area) given to 1st player to make game fair

Source: B. Bouzy et al., MCTS Experiments on the Voronoi Game, Advances in Computer Games, 7168 (2011)

- Adding Voronoi knowledge to simulations improves win percentage:
 - Last-move depth-one search
 - Attacks on unbalanced cells

Balanced cells for n=5

Source: B. Bouzy et al., MCTS Experiments on the Voronoi Game, Advances in Computer Games, 7168 (2011)

Additively weighted Voronoi diagrams

- Boundary between sites ${\bf p}$ and ${\bf q}$ defined by

$$d(\mathbf{p}, \mathbf{x}) - w_p = d(\mathbf{q}, \mathbf{x}) - w_q$$

• Equivalent to Voronoi diagram with disks

Cell boundaries are segments of hyperbolas

Weighted Voronoi game?

On your turn, either place new site or add to weight of existing site

Viva la Discrete

